
Using Security Invariant to Verify Confidentiality in
Hardware Design

Shuyu Kong
Northwestern University

shuyukong2020@u.north-
western.edu

Yuanqi Shen
Northwestern University

yuanqishen2020@u.north-
western.edu

Hai Zhou
Northwestern University

haizhou@north-
western.edu

ABSTRACT

Due to the increasing complexity of design process, outsourc-
ing, and use of third-party blocks, it becomes harder and
harder to prevent Trojan insertion and other malicious de-
sign modifications. In this paper, we propose to deploy secu-
rity invariant as carried proof to prevent and detect Trojans
and malicious attacks and to ensure the security of hard-
ware design. Non-interference with down-grading policy is
checked for confidentiality. Contrary to existing approaches
by type checking, we develop a method to model-check a sim-
ple safety property on a composed machine. Down-grading
is handled in a better way in model-checking and the effec-
tiveness of our approach is demonstrated on various Verilog
benchmarks.

1. INTRODUCTION
Design and manufacture of complex semiconductor cir-

cuits and systems requires many steps, and one design could
involve hundreds of engineers, typically distributed across
multiple locations and organizations worldwide. Moreover,
the deployment of IP blocks from different sources has be-
come a common practice. The conventional processes and
tools for design and manufacture of semiconductors at most
ensure the correctness. However, to date, these processes
do not provide confidence about whether the chip is altered
such that it provides illegal sensitive information leakage.
Such undesirable behavior can be due to a weakness in the
design that results in an unintentional side channel or due
to maliciously inserted Trojan hardware.

Existing protections from hardware Trojan insertion and
side-channel attacks are mostly based on testing or circuit
analysis that are passive, ad hoc, and afterthoughts based on
individual designs. In this paper, we propose a proactive ap-
proach based on a novel design framework called Invariant-
Carrying Machine that will increase the confidentiality and
trustworthiness of hardware. It leverages the current prac-
tice of verification in hardware design, and is based on light-
weight formal methods that are scalable for large designs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI ’17, May 10-12, 2017, Banff, AB, Canada

c⃝ 2017 ACM. ISBN 978-1-4503-4972-7/17/05. . . 5.00

DOI: http://dx.doi.org/10.1145/3060403.3060456

The idea of carrying proof in hardware has been proposed
in some recent work on “Proof-Carrying Hardware” [3, 6].
Drzevitzky ’s approach only applies on configuration bit
stream for FPGA. Even though Love ’s approach can han-
dle general designs in HDL, it requests the design being
translated into another formal language, and a proof being
constructed based on required security properties. Such re-
quests incur extra workloads on designers and the scalability
of formal methods could be a concern. Contrarily, ICM will
use the native Verilog directly as the hardware model, and
only add the inductive invariant in the Verilog description.
Similar to the Proof-Carrying Code (PCC) for software secu-
rity, Invariant-Carrying Machine (ICM) requests that each
hardware design carries with it an inductive invariant. The
invariant constitutes an assurance of the design, that is, it
implies the security property or policy. The invariant must
also be inductive.

In this paper, we mainly focus on one of the most impor-
tant security property, confidentiality. We uses the notion
of noninterference as a means to specify and prove hardware
confidentiality. Noninterference requests the low confiden-
tial output will not be affected by the high confidential in-
put. Based on the allowed amount of information leakage,
noninterference can be further categorized into pure nonin-
terference and relaxed noninterference. We develop strate-
gies to handle both types and leverage state of the art formal
verification tools to extract the inductive invariant held in
state machine of the hardware system that can imply the
noninterference property. In the experiment, we verify our
approach on six small and median-sized behavioral verilog
benchmarks revised from standard design.

2. ICM FRAMEWORK
In this paper, we are going to develop a hardware de-

sign framework called ICM (Invariant-Carrying Machine) for
hardware assurance. As illustrated in Figure 1, the frame-
work consists of a library of security policies and properties
that are agreed among all parties, tools to aid the generation
of inductive invariant for a given hardware design, and tools
to check the validity of the invariant-carrying machine under
the given security properties. If the hardware is an in-house
design, the inductive invariant will be maintained through
the whole design process and its validity will be checked af-
ter each big design step. If the hardware is an IP block, the
user needs to check the validity of the inductive invariant
before deploying the block. Hardware Trojans will be de-
tected when validity checking fails. The whole approach is
based on formal methods and follows the principles of the





on H , unless the domain of H is small, it will be almost
impossible to learn H from (g , l) pairs.

One possible way to evaluate the confidentiality level is
through quantitative information flow analysis that uses prob-
abilistic analysis to calculate the amount of leaked informa-
tion. However, such probabilistic analysis is very expensive
and heavily depends on the specifics of the target system.
Alternatively, we decide to use relaxed noninterference with
downgrading policies [5] as the confidentiality policies in our
framework. Downgrading is used to specify allowed informa-
tion flow from a high security level to a low security level,
which is also called declassification for confidentiality. In-
tuitively, relaxed noninterference is the same as noninterfer-
ence that forbids information flow from high security to low
security, with the exception of the given downgrading. A
security policy can be modeled as a downgrading function F
which involves at least one high-security input.

4.2 Self-composition
After settling on the relaxed noninterference with down-

grading policies for confidentiality, we need to consider how
to specify them and how to prove them. We come to an
approach based on self-composition [1, 8]. Intuitively, non-
interference means that for any computational trace of the
system, there must exist another trace where even the high
security inputs have different values, the low security behav-
ior is the same. Self-composition composes two copies of the
original system (with input and variable renaming). There-
fore, any property about two possible traces in the original
system can be stated as a property about one trace in the
composed system.

Formally, a state machine M = (X̄ , Ī , Ō , Init ,TR) can
be described by propositional logic formulas: X̄ is all the
internal state variables, Ī and Ō are all the inputs and out-
puts, Init(X̄ ) is the initial condition and TR(Ī , X̄ , Ō , X̄ ′) is
the transition relation where X̄ ′ represents the next state.
Meanwhile, inputs and outputs are categorized by their se-
curity sensitivity such that Ī = Ī l ∨ Ī h and Ō = Ō l ∨ Ōh .

Given M , we can characterize self-composed state ma-
chine M comp = (X̄ comp , Ī comp , Ōcomp , Initcomp ,TRcomp) as
follows:

X̄ comp
∆
= X̄∨X̄ c , Ōcomp

∆
= Ō∨Ōc , Ī comp

∆
= Ī l∨Ī h∨Ī c

h

Initcomp
∆
= Init ∧ Initc

∧

x∈X (x = xc),

TRcomp
∆
= TR ∧ TRc

The pure noninterference can also be specified by the fol-
lowing propositional logic.

Inv
∆
=

∧

o∈Ol
(o = oc)

Then, the proof obligation is to show that every reachable
state in the transition state machine M satisfies Inv , which is
symbolically represented as M |= Inv . Now, the noninterfer-
ence proof problem is reduced to a model checking problem.
Ideally, we can take advantage of formal verification tools
and apply state-of-the-art model checking algorithm to ver-
ify the query M |= Inv and compute the fixed point as our
inductive invariant. Note the above self-composition is for
the clock-wise transition relations. If execution flow is en-
coded and TR is statement-wise, TRcomp should be revised
to support synchronization at the end of one clock cycle ex-
ecutions since one copy may run faster than the other copy.
Besides, Initcomp and Inv should be revised as follows:

Initcomp
∆
= Init ∧ Initc

∧

x∈X (x = xc) ∧ (PC = PC c = 0)

Inv
∆
= (PC = PC c = 0) ⇒

∧

o∈Ol
(o = oc)

4.3 Transition Relation With Downgrading
The proof obligation presented in Section 4.2 does not

take downgrading policy into consideration. Our next step
is to show how to revise the composed transition relation to
prove the relaxed noninterference of a given design.
Intuitively, relaxed noninterference verification is equiva-

lent to the strong noninterference verification if the sensitive
information is never leaked through the downgrading func-
tion. Accordingly, our goal is to encode this condition into
the state transition relation. This requires the same out-
put value of any corresponding computation blocks in both
copies that perform the downgrading function. For the sake
of simplicity in demonstration but without loss of generality,
we assume only one downgrading function is provided and
is performed by at most one execution block only once. We
make this assumption default in the rest of the paper. It is
trivial to extend the idea to more complex cases.
Firstly, we have the observation that it is relatively straight-

forward to incorporate the downgrading function into the
proof obligation if the transition relation is coarse-grained
without execution flow. In order to build the state transition
TRF with downgrading policy F , we only need to revise the
transition relation to force the output of the downgrading
function of one copy(minor copy) equal to that of the other
copy(major copy) instead of minor copy’s own downgrading
function output. On the other hand, when the transition
relation is generated by a parser and has execution control
flow, the two copies may not be synchronous during the ex-
ecution. So it is relatively hard to enforce the same output
of the downgrading function from two copies. To solve this
problem, we introduce an extra boolean state variable, flag
to indicate whether the major copy has already performed
the downgrading function or not. The transition for flag is
as follows assuming dp and condF are the execution point
and corresponding branch condition under which the down-
grading is performed respectively.

TRflag ∆
= PC = 0 ⇒ ¬flag ′ ∧ (PC = dp ∧ condF ) ⇒ flag ′

∧ ¬(PC = 0 ∨ PC = dp) ⇒ flag ′ = flag

To construct the new composed transition relation TRF
comp

from TRcomp to support downgrading function F , the tran-
sition logic of the control state variable from the minor copy
PC c should be changed. If the minor copy is about to
perform the downgrading, it first needs to check whether
the flag is raised, meaning the major copy has already been
through the downgrading in the same clock cycle. If the flag
is raised, it will take the output value of the downgrading
function from the major copy and proceed forward. If the
flag is not raised, it will wait until either the flag is raised or
the major copy reaches the end of a clock cycle computation.
Denote Fvar as the variable assigned to the output value of
the downgrading function F . Accordingly, new PC c and
Fvar transition wil be as follows:

cond1
∆
= PC c = dp ∧ condF

c ∧ ¬flag ∧ PC ̸= maxPC + 1

cond2
∆
= PC c = dp ∧ condF

c ∧ flag = TRUE

PC ′
c =

{

PC c cond1

same as in old TRcomp otherwise

Fvar ′c =

{

Fvar cond2

same as in old TRcomp otherwise

where maxPC is the original last execution point in one
clock cycle and maxPC+1 is the extra execution point to
synchronize two copies at the end of a clock cycle.

To summary, the final desired version of transition rela-
tion, initial condition and relaxed noninterference property



Table 1: experiment results for both strict and relaxed noninterference verification

benchmarks # of clauses in inductive invariant # of sat queries model checking time (s)

strict relaxed strict relaxed strict relaxed

updown-cntr.v 46 27 1090 1447 1.56 3.73
LFSR.v 114 44 5513 6728 14.24 68.62
fib.v 148 157 7059 12025 72.2 132.39

multiplier.v 209 218 12431 12891 187.62 199.47
gcdEuclid.v 176 198 9787 10017 104.42 158.05

crc.v 208 242 17875 20242 230.45 257.86

are expressed as:

TRfinal
∆
= TRF

comp ∧ TRflag

Initfinal
∆
= Initcomp ∧ ¬flag ∧ (PC = PC c = 0)

Invfinal
∆
= (PC = 0 ∧ PC c = 0) ⇒

∧

o∈Ol
(o = oc)

Our approach to enforce the same downgrading function
output of two copies can avoid false negative, that is, re-
port secure when the hardware is actually insecure under
the given downgrading policy. This guarantees the baseline
security checking criterion. However, we can not avoid false
positive, that is, report insecure when the hardware is ac-
tually secure under the given downgrading policy. In this
sense, our approach to verify the relaxed noninterference is
over conservative and it is necessary to conduct further se-
curity checking when the a result of “insecure” is reported.

5. EXPERIMENT RESULTS
We have implemented a Verilog parser that currently can

translate a behavioral specification into a state machine given
by its initial condition and transition relation. We leverate
the state-of-art model checking tool CTIGAR (Counterex-
ample To Induction-Guided Abstraction-Refinement ) [?] to
verify and compute the inductive invariant of the confiden-
tiality property from the state machine. CTIGAR is an
SMT-based model checker which extracts the inductive in-
variant by finding counterexamples and incrementally re-
fining the property. CTIGAR is more efficient than many
other model checking algorithms because it avoids unneces-
sary state unrolling.

We verify our approach on 6 small and median-sized be-
havioral verilog benchmarks revised from standard design.
We first have a short description of each of our benchmarks:

• updown-cntr.v: 8-bit bidirectional counter and the
direction is depending on a 1-bit input.

• LFSR.v: 8 bit linear-feedback shift registers.

• fib.v: sequentially compute the nth fibonacci number,
where n is an 8-bit input.

• multiplier.v: sequentially compute the multiplica-
tion of two 16-bit inputs.

• gcdEuclid.v: compute greatest common divisor be-
tween two 16-bit inputs using Euclid Algorithm.

• crc.v: serial cyclic redundancy check x16+x15+x2+x0.

In all the benchmarks, we define the downgrading func-
tion as well as the security level of each input and output.
Experimental results are shown in table 1. Compared with

small-scale designs like updown-cntr.v, larger designs like
crc.v require more sat queries and longer model checking
run time to generate inductive invariants with more clauses.
This is because larger designs have more execution blocks
and will be translated into longer transition relations.

6. CONCLUSION
In this paper, we have introduced the framework of Invari-

ant Carrying Machine for hardware assurance and investi-
gated one of the most important security policy, confiden-
tiality. We focused on relaxed noninterference with down-
grading policies that could be proved by inductive invariant
on self-composition of the machine. Experimental results
on small- and median-sized designs have demonstrated the
effectiveness of our approach.

7. ACKNOWLEDGEMENT
This work is partially supported by NSF under CNS-

1651695 and CNS-1441695, and by SRC under 2014-TS-
2559.

8. REFERENCES
[1] Barthe, G., D’Argenio, P. R., and Rezk, T. Secure

information flow by self-composition. In Proceedings of the
17th IEEE Workshop on Computer Security Foundations
(Washington, DC, USA, 2004), CSFW ’04, IEEE Computer
Society, pp. 100–.

[2] Clarkson, M. R., and Schneider, F. B. Hyperproperties.
J. Comput. Secur. 18, 6 (Sept. 2010), 1157–1210.

[3] Drzevitzky, S., Kastens, U., and Platzner, M.
Proof-carrying hardware: Towards runtime verification of
reconfigurable modules. In Reconfigurable Computing and
FPGAs, 2009. ReConFig ’09. International Conference on
(Dec 2009), pp. 189–194.

[4] Lamport, L. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers.
Addison-Wesley Publishing Company, 2002.

[5] Li, P., and Zdancewic, S. Downgrading policies and
relaxed noninterference. In Proceedings of the 32Nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (New York, NY, USA, 2005),
POPL ’05, ACM, pp. 158–170.

[6] Love, E., Jin, Y., and Makris, Y. Proof-carrying hardware
intellectual property: A pathway to trusted module
acquisition. IEEE Transactions on Information Forensics
and Security 7, 1 (2012), 25–40.

[7] Necula, G. C. Proof-carrying code. In ACM Symposium on
Principles of Programming Languages (1997).

[8] Terauchi, T., and Aiken, A. Secure information flow as a
safety problem. In Proceedings of the 12th International
Conference on Static Analysis (Berlin, Heidelberg, 2005),
SAS’05, Springer-Verlag, pp. 352–367.


